Towards a measurement of the 44Ti(α,p)47V reaction1 BENJAMIN ASHER, SERGIO ALMARAZ-CALDERON, EILENS LOPEZ-SAAVEDRA, NATHAN GERKEN, Florida State Univ, MELINA AVILA, CALEM HOFFMAN, ERNST REHM, CALYTON DICKERSON, DANIEL SANTIAGO-GONZALEZ, HESHANI JAYATISSA, CHENG-LIE JIANG, Argonne National Laboratory, GEMMA WILSON, Louisiana State University — The detection of gamma-rays from the decay of the long lived radioisotope 44Ti ($t_{1/2} = 60.0$y) by satellite based observatories, has been associated with core collapse supernovae remnants. The detected amount of 44Ti in the interstellar medium might provide critical insight for understanding the explosion mechanism of core collapse supernovae. The rate of the 44Ti(α,p)47V reaction is a key reaction which determines the final abundance of Ti produced in such explosive environment. We have successfully developed a 44Ti beam via the 42Ca(He,n) 44Ti reaction at the new in-flight Radioactive Ion Separator (RAISOR) at Argonne National Laboratory. Preliminary results on the development and characterization of a 44Ti beam will be presented as well as preparations on the use of this beam with the Multi-Sampling Ionization Chamber (MUSIC) detector to measure the 44Ti(α,p)47V reaction in the astrophysically relevant energy region.

1This work was supported by the U.S. DOE, Office of Nuclear Physics under contract No. DEAC02-06CH11357, the NSF under grant PHY-1712953 and the State of Florida. This research used resources of ANL’s ATLAS facility, which is a DOE Office of Science User Facility.