Abstract Submitted for the APR20 Meeting of The American Physical Society

Investigating the 38 K (p,γ) 39 Ca reaction rate in novae via the energv levels of ³⁹Ca¹ MATTHEW HALL, Oak Ridge National Lab, DANIEL BARDAYAN, University of Notre Dame, TRAVIS BAUGHER, ALEX LEP-AILLEUR, Rutgers University, STEVEN PAIN, Oak Ridge National Lab, AN-DREW RATKIEWICZ, Lawrence Livermore National Lab, GODDESS COLLAB-ORATION — While it is known that the endpoint of nucleosynthesis in nova explosions is around ⁴⁰Ca, discrepancies exist between the modeled and observed abundances of nuclei near the endpoint. Uncertainties in the ${}^{38}K(p,\gamma){}^{39}Ca$ reaction rate could be one source of the discrepancy. Accurate calculation of the rate depends on knowledge of three $\ell = 0$ resonances, which correspond to $J^{\pi} = 5/2^+$ excited states in 39 Ca above the 38 K+p threshold. Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS) was used to study these excited states via the ${}^{40}Ca({}^{3}He,\alpha){}^{39}Ca$ reaction at Argonne National Laboratory. Three excited states with energies of 6156.2(16), 6268.8(22), and 6470.8(19) keV were found by studying the γ - α coincidences in the measurement, corresponding to three suspected $J^{\pi} = 5/2^+$ states. Their impact on the ${}^{38}\mathrm{K}(p,\gamma){}^{39}\mathrm{Ca}$ reaction rate was investigated and these results will be discussed.

¹This research was supported in part by the NSF (PHY-1419765 and PHY-1404218), the NNSA under the SSAA program through DOE Cooperative Agreement DE-NA002132, DOE Office of Science, Office of Nuclear Physics, contract nos. DE-AC05-00OR22725 and DE-FG02-96ER40963, and ANL contract no. DE-AC02-06CH11357.

Matthew Hall Oak Ridge National Lab

Date submitted: 10 Jan 2020

Electronic form version 1.4