SuperTIGER Abundances of Galactic Cosmic-Rays for the Charge Interval Z=41-56

NATHAN WALSH, Washington University, St. Louis, SUPERTIGER COLLABORATION — On December 8, 2012 the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument was launched from Williams Field, Antarctica on a long-duration balloon flight that lasted 55 days and maintained a mean altitude of 125,000 feet. SuperTIGER measured the relative abundances of Galactic cosmic-ray (GCR) nuclei with high statistical precision and well resolved individual element peaks from 10Ne to 40Zr. SuperTIGER also made exploratory measurements of the relative abundances up to 56Ba. The SuperTIGER data analysis reported in Murphy et al. 2016 was performed before the Antarctic recovery effort in 2015 and only included data transmitted during line-of-site periods and via telemetry. The current analysis includes additional data saved to on-board solid-state drives that were retrieved during recovery. Although the statistics are low for elements heavier than 40Zr, we show relative abundances of charges Z=41-56 with individual element resolution. The relative abundances of elements 40Zr through 60Nd are of particular interest because they are likely formed by both supernova explosions and binary neutron star mergers. A well resolved measurement of this charge range can constrain the contributions to the GCR composition from both these possible sources.