Abstract Submitted for the APR21 Meeting of The American Physical Society

Intrinsic Electric Quadrupole Moment of the $K^{\pi}=8^-$ Isomeric State in $^{178}\mathrm{Hf^1}$ SHAOFEI ZHU, Brookhaven National Laboratory — The lifetime of the 9^- state in the rotational band based on the 4.0 s, $K^{\pi}=8^-$, isomeric state ($^{178}\mathrm{Hf^{m_1}}$) from the decay of the 31-yr isomer ($^{178}\mathrm{Hf^{m_2}}$) was determined to be 99(2) ps by means of the fast-timing technique using two LaBr₃(Ce) scintillators. The $\delta(E2/M1)$ mixing ratios of the $\Delta I=1$ γ rays depopulating levels in this band were deduced from γ - γ angular correlations by using a $^{178}\mathrm{Hf^{m_2}}$ radioactive source located at the center of the Gammasphere HPGe detector array. The new results, together with previous spectroscopic information, provide a different way to extract the intrinsic quadrupole moment of $Q_0=6.45(14)$ eb for the $^{178}\mathrm{Hf^{m_1}}$ band. A possible explanation for the reduction of the $^{178}\mathrm{Hf^{m_1}}$ nuclear charge radius is presented.

¹Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract numbers DE-AC02-98CH10886 and No. DE-AC02-06CH11357.

Shaofei Zhu Brookhaven National Laboratory

Date submitted: 05 Jan 2021 Electronic form version 1.4