Characterizing the Dynamics of Quantum Equilibration, Dissipation, and Fluctuation via Nuclear Collisions

KYLE GODBEY, Texas AM University, CEDRIC SIMENEL, Australian National University, SAIT UMAR, Vanderbilt University — In an effort to better understand the complex nature of quantum equilibration and dissipation processes in interacting many-body systems, we have performed a systematic analysis of a large number of independent microscopic studies of collisions between atomic nuclei. Universal timescales are uncovered for each of the processes which suggest a limit to the possible interplay between mechanisms. The quickest processes are that of neutron-to-proton equilibration, kinetic energy dissipation, and angular momentum dissipation – all on the order of 10^{-21}s. This is much faster than the characteristic timescale of mass equilibration, which has a general equilibration time of 2×10^{-20}s, indicating that mass equilibration is not a primary driver of dissipation processes. Instead, it is the initial neutron-to-proton equilibration (itself a transfer of particles) that generates much of the dissipation.

This work has been supported by the Australian Research Council Discovery Project (project numbers DP160101254 and DP190100256) funding schemes and by the U.S. Department of Energy under grant No. DE-SC0013847 with Vanderbilt University.