Abstract Submitted for the APR21 Meeting of The American Physical Society

Symplectic Effective Field Theory¹ DAVID KEKEJIAN, JERRY DRAAYER, KRISTINA LAUNEY, Louisiana State University — We explore the emergence of symplectic $\mathrm{Sp}(3,\mathbb{R})$ symmetry, a dynamical symmetry that is commonly displayed in atomic nuclei, from an effective quantum field theory. Starting from a simple extension to the harmonic oscillator Lagrangian, we construct an effective field theory that yields a quantum mechanical Hamiltonian that is $\mathrm{Sp}(3,\mathbb{R})$ -symmetric in nature. The application of this Hamiltonian to various light nuclei produces reasonable energy spectra, $\mathrm{B}(\mathrm{E2})$ strengths and radii.

¹NSF and SURA

David Kekejian Louisiana State University

Date submitted: 06 Jan 2021 Electronic form version 1.4