Abstract Submitted for the APR21 Meeting of The American Physical Society

A New Approach to Probe Non-Standard Interactions in Atmospheric Neutrino Experiments ANIL KUMAR, Institute of Physics, Bhubaneswar, AMINA KHATUN, Comenius University, Bratislava, Slovakia, SAN-JIB KUMAR AGARWALLA, Institute of Physics, Bhubaneswar, AMOL DIGHE, Tata Institute of Fundamental Research, Mumbai, INDIA-BASED NEUTRINO OBSERVATORY (INO) COLLABORATION — We propose a new approach to explore the neutral-current non-standard neutrino interactions (NSI) in atmospheric neutrino experiments using oscillation dips and valleys in reconstructed muon observables, at a detector like ICAL. We show that the non-zero value of NSI parameter $\varepsilon_{\mu\tau}$ shifts the oscillation dip locations in L/E distributions of the up/down event ratios of reconstructed μ^- and μ^+ in opposite directions. We introduce a new variable Δd representing the difference of dip locations in μ^- and μ^+ , which is sensitive to $\varepsilon_{\mu\tau}$, and is independent of the value of Δm_{32}^2 . We further note that the oscillation valley in the $(E, \cos \theta)$ plane of the reconstructed muon observables bends in the presence of NSI, its curvature having opposite signs for μ^- and μ^+ . We illustrate how the measurement of contrast in the curvatures of valleys in μ^- and μ^+ can be used to estimate. Using these proposed oscillation dip and valley measurements, the achievable precision on $|\varepsilon_{u\tau}|$ at 90% C.L. is about 2% with 500 kt·yr exposure including the effects of statistical fluctuations, systematic errors, and uncertainties in oscillation parameters.

Anil Kumar Institute of Physics, Bhubaneswar

Date submitted: 08 Jan 2021 Electronic form version 1.4