Abstract Submitted for the APR21 Meeting of The American Physical Society

Huygens Analogy Between Propagation of Light Waves in Ether and Sound Waves in Air SIAVASH SOHRAB, Northwestern University — According to a scale-invariant model of Boltzmann statistical mechanics speed of light is identified as root-mean-square speed of photons in physical space identified as a compressible tachyon fluid, Planck compressible ether, that is de Broglie hidden thermostat or Casimir vacuum. In accordance with perceptions of Huygens², propagation of light waves in ether is found to be analogous to that of sound waves in air with the ratio of longitudinal to transverse velocities given as $c_l/c_t = \sqrt{3}$. Photons are considered to have helical trajectories due to their periodic (axial, angular, radial) motions along cylindrical "strings" with three simultaneously independent coordinates (z, θ, r) and by Boltzmann equipartition principle, have Wien¹ velocities $(v_{wz}=c/\sqrt{3}, v_{w\theta}=c/\sqrt{3}, v_{wr}=c/\sqrt{3})$ leading to photon atomic internal energy $\hat{u}=m_oc^2=3kT$ and atomic enthalpy $\hat{h}=\hat{u}+p\hat{v}=mc^2=4kT$ hence Hasenöhrl $\gamma = 4/3$ factor in $m = (4/3)m_o$ (S. H. Sohrab, APS Bulletin, April 2017). With atomic potential energy $p\hat{v} = \hat{u}/3$ and ideal gas law $p = \rho RT$, speed of light waves $c = \sqrt{3kT/m_o} = \sqrt{3kT'/2m_o}$ in photon gas or Casimir vacuum is in close agreement with Laplace formula $c = \sqrt{\gamma RT'}$ for speed of sound waves in ideal gas³. ¹ Sohrab, S. H., ASME J. Energy Resources Technology 138: 1-12 (2016). ² Huygens, C., Treatise on Light, p.14, Dover, 1912. ³ Krout, K. A., and Sohrab, S. H., Int. J. Thermodynamics 19: 29-34 (2016).

> Siavash Sohrab Northwestern University

Date submitted: 19 Jan 2021 Electronic form version 1.4