Abstract Submitted for the APR21 Meeting of The American Physical Society

Evolution of Neutrino Mass-Mixing Parameters in Matter with Non-Standard Interactions SUDIPTA DAS, PRAGYANPRASU SWAIN, MEHEDI MASUD, SANJIB KUMAR AGARWALLA, Institute of Physics, Bhubaneswar — We explore the role of matter effect in the evolution of neutrino oscillation parameters in the presence of flavor-conserving and flavor-violating nonstandard interactions (NSIs) of the neutrino. We derive simple approximate analytical expressions showing the evolution/running of the mass-mixing parameters in matter with energy and in presence of NSIs. We observe that only the NSIs in (2,3)block ($\varepsilon_{\mu\mu}$, $\varepsilon_{\tau\tau}$, and $\varepsilon_{\mu\tau}$) affect the running of θ_{23} . Though all the NSIs influence the evolution of θ_{13} , $\varepsilon_{e\mu}$ and $\varepsilon_{e\tau}$ show a stronger impact. θ_{12}^m saturates to $\pi/2$ at smaller energy. We demonstrate the utility of our approach in addressing several important features related to neutrino oscillation such as: a) unraveling interesting degeneracies between θ_{23} and NSI parameters, b) estimating the resonance energy in presence of NSIs when θ_{13} in matter becomes maximal, c) figuring out the required baseline length and neutrino energies to have maximal matter effect in $\nu_{\mu} \rightarrow \nu_{e}$ transition with NSIs, and d) studying the impact of NSIs in (2,3) block on the ν_{μ} survival probability.

> Sudipta Das Institute of Physics Bhubaneswar

Date submitted: 08 Jan 2021

Electronic form version 1.4