Abstract Submitted for the APR21 Meeting of The American Physical Society

 ϕ -meson production in Au + Au collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 3 \; \mathrm{GeV}$ from STAR GUANNAN XIE, Lawrence Berkeley National Laboratory, STAR COL-LABARATION COLLABORATION — The ϕ -meson is the lightest bound state of strange quarks $(s\bar{s})$. It has a relatively small hadronic interaction cross-section, therefore ϕ -meson is considered to be a sensitive probe of the earlier dynamics in the heavy-ion collision. Recent measurements by HADES and FOPI on subthreshold ϕ -meson production show a larger ϕ/K^- ratio compared to the results at higher energies[1,2], and this larger ϕ/K^- ratio cannot be described by thermal model calculations with Grand Canonical Ensemble for strangeness. In this presentation, we will report on our first measurements of ϕ -meson production in Au+Au collisions at $\sqrt{s_{\scriptscriptstyle {
m NN}}}=3$ GeV of energy just above the NN threshold. The data were taken in 2018 by the STAR experiment with Fixed Target configuration. ϕ -mesons are measured through their hadronic decay channel, $\phi \to K^- + K^+$. After being corrected for the detector acceptance and tracking efficiencies, invariant yields and directed flow of ϕ -mesons as well as ϕ/K^- ratio are presented in several centrality intervals and the results will be compared to model calculations. [1], HADES, Phys. Let. B 778, (2018) 403-407. [2], FOPI, Eur. Phys. J. A 52, (2016) 177.

Shaowei Lan Lawrence Berkeley National Laboratory

Date submitted: 08 Jan 2021 Electronic form version 1.4