Abstract Submitted for the APR21 Meeting of The American Physical Society

Study the Origin of Proton Mass with Near Threshold J/ψ Production¹ CHAO PENG, Argonne National Laboratory, E12-12-006 COLLABORATION², SOLID COLLABORATION³ — Nucleons compose almost all visible mass in our universe. Yet, our understanding of nucleon mass, especially the QCD trace anomaly's role, is still limited. Production of J/ψ near its threshold provides a unique probe to the nucleon's gluonic structure, enabling access to the dynamic origin of the nucleon mass. The SoLID- J/ψ experiment (JLab E12-12-006) will measure the near-threshold differential J/ψ production cross-section with high statistical precision and obtain crucial input to determine the trace anomaly contribution to the proton mass. I will discuss the projected impact on the trace anomaly term from the SoLID- J/ψ experiment and the complementarity of SoLID- J/ψ with the future EIC experiments.

¹This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No DE-AC02-06CH11357. ²SoLID-J/Psi Collaboration ³SoLID Collaboration

> Chao Peng Argonne National Laboratory

Date submitted: 08 Jan 2021

Electronic form version 1.4