Abstract Submitted for the APR21 Meeting of The American Physical Society

Analysis of Double Beta Decays of 100 Mo to Excited States in CUPID-Mo TOBY DIXON, University of California, Berkeley, CUPID-MO COLLABORATION — CUPID-Mo, located at the Laboratoire Souterrain de Modane, in France was a demonstrator for CUPID, a next generation search for $0\nu\beta\beta$ in 100 Mo. CUPID-Mo consisted of $20\sim200$ g Li_2^{100} MoO₄ scintillating bolometers with 20 Ge light detectors. It has demonstrated excellent crystal radiopurity ($^{238}\mathrm{U}$ $^{232}\mathrm{Th}$ chains $0.3-1~\mu Bq/kg$ for relevant isotopes), α , β/γ particle discrimination (>99.9%), and energy resolution (~7 keV FWHM at 2615 keV). CUPID-Mo has placed the leading limit on the half life of $0\nu\beta\beta$ in $^{100}\mathrm{Mo}$ of $T_{1/2}^{0\nu}>1.5\cdot10^{24}$ yr with 90% C.I. In this talk we present the status of analysis of double beta decays of $^{100}\mathrm{Mo}$ to excited states of $^{100}\mathrm{Ru}$. In these decays, the electrons are accompanied by one or more de-excitation gamma lines. Multi-site events provide a very clear experimental spectrum technique to reduce background rates when searching for these gammas.

Toby Dixon University of California, Berkeley

Date submitted: 08 Jan 2021 Electronic form version 1.4