Abstract Submitted for the CAL09 Meeting of The American Physical Society

La-139 NMR in La₄Ni₃O₈: a possible analog to the cuprate high temperature superconductors NICHOLAS APROBERTS-WARREN, ADAM DIOGUARDI, ABIGAIL SHOCKLEY, NICHOLAS CURRO, UC Davis, VIKTOR POLTAVETS, MARTHA GREENBLATT, Rutgers University — The Ni¹⁺/Ni²⁺ states in the nickelates have identical electronic configurations as $\mathrm{Cu}^{2+}/\mathrm{Cu}^{3+}$ in the high temperature superconducting cuprates (3d⁹/3d⁸), and may exhibit similar properties. However, the Ni¹⁺ state is rare and cannot be easily stabilized. Recently, Martha Greenblatt and collaborators at Rutgers University have succeeded in growing a family of such compounds, $Ln_{n+1}Ni_nO_{2n+2}$ with a layered structure similar to the cuprates. The La₄Ni₃O₈ compound is particularly interesting as it undergoes an antiferromagnetic transition at $T_N = 100$ K. We have done La NMR on powder samples to investigate the nature of this phase. Our spin lattice relaxation rate measurements clearly reveal a second order electronic phase transition similar to that observed in other antiferromagnets. Although we found clear signatures of changes to the spectra below T_N , we are unable to assign these changes to the presence of an internal field from the antiferromagnetic structure, or changes to the electric field gradient at the La site.

Nicholas apRoberts-Warren University of California at Davis

Date submitted: 16 Oct 2009 Electronic form version 1.4