Abstract Submitted for the CAL11 Meeting of The American Physical Society

FTIR Spectroscopy and Density Functional Theory of the 1474 cm⁻¹ Absorption in C_n Carbon Cluster Spectra¹ MEKENA MCGREW, St. Mary's College of California, CHRISTINA LE, W.R.M GRAHAM, Texas Christian University, TEXAS CHRISTIAN UNISVERSITY MOLECULAR PHYSICS LAB TEAM — The identification of the infrared frequencies of carbon clusters is significant for astrophysical and material science research. By using FTIR spectroscopy, density functional theory, and argon matrix trapping numerous C_n carbon clusters have been observed in the Nd:YAG laser ablation products trapped in solid argon. An unidentified absorption at 1474 cm⁻¹ has been observed in our experiments, and ¹³C isotopic shift measurements and DFT calculations have been performed to test potential C_n candidates for the carrier of the band. The number and relative intensities of the isotopic shifts suggest a molecule consisting of 4 or 6 atoms. Simulated ¹³C shift spectra have been calculated for a variety of 4- and 6-member C_n structureusing the B3LYP functional and ccPVDZ basis set. Potential sources of the 1473 cm⁻¹ band will be discussed.

¹National Science Foundation Grant PHYS-0851558

Mekena McGrew

Date submitted: 29 Sep 2011

Electronic form version 1.4