Abstract Submitted
for the CAL11 Meeting of
The American Physical Society

α-quantized Einstein masses for leptons, quarks, hadrons, gauge bosons, and Higgs constants MALCOLM MAC GREGOR, Lawrence Livermore National Laboratory (Retired) — The Einstein particle mass ε_i is defined by the equation $\varepsilon_i = E_i / c^2$. The basic particle ground states have unique additive Einstein masses (energies), and they interleave in α-quantized ($\alpha^{-1} = 137$) energy plots to form distinctive excitation patterns. The $\varepsilon_{u,d,s,c,b,t}$ Einstein masses are constituent-quark masses. Particle generation proceeds via “α-boosted” boson, fermion, and gauge-boson “unit masses,” which are “bundled” together to form particles and quarks. The Einstein mass equations extend throughout the entire range of particle masses. Lederman and Hill1 note that the scalar Higgs and Fermi fields are at the 175 GeV energy scale of the top quark t, and they suggest the Higgs coupling constant equation $g_e = m_e / m_t = 0.0000029$, which matches the Einstein mass expression $g_e = \alpha^2 / 18$.