Rapid Bayesian Triangulation of Gravitational Wave Inspirals for Advanced LIGO

LEO SINGER, LARRY PRICE, LIGO Laboratory, California Institute of Technology — Potential electromagnetic counterparts of compact binary mergers detectable by ground-based gravitational wave detectors fade rapidly. In the last joint LIGO–Virgo science run, a coincidence-based triangulation code produced sky maps for rapid telescope pointing. We are improving upon it with a more accurate Bayesian sky localization algorithm that takes as input the matched-filter amplitude and time-of-arrival. We review the parameter estimation accuracy of matched filters, comparing the often-used Cramér-Rao bound with the tighter, but less well known, Barankin bound. We then describe our new sky localization algorithm and its performance.

Leo Singer
LIGO Laboratory, California Institute of Technology

Date submitted: 05 Oct 2012

Electronic form version 1.4