The Spacetime-Interval does not Distinguish Between Events' Nature

FLORENTIN SMARANDACHE, University of New Mexico — If an event \(E_1 \) occurs at location \(L_1(x_1, y_1, z_1) \) and time \(t_1 \), and another event \(E_2 \) occurs at the location \(L_2(x_2, y_2, z_2) \) and time \(t_2 \), with \(t_1 \leq t_2 \), in the Minkowski spacetime, the squared distance \(d^2(E_1, E_2) \) between them is the same and equal to:

\[
d^2(E_1, E_2) = c^2(t_2 - t_1)^2 - [(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]
\]

no matter what kind of events we have! For example, if one has the event \(E_1 = \{John \ drinks\} \) and the event \(E_2 = \{George \ eats\} \), there is no connection between these two events. Or if one has two connected events: \(E_1 = \{Arthur \ is \ born\} \) and \(E_2 = \{Arthur \ dies\} \). There should be at least one parameter [let’s call it “\(N'\)] in the above \(\Delta s^2 \) spacetime coordinate formula representing the event’s nature.