Abstract Submitted
for the DAMOP05 Meeting of
The American Physical Society

Fully Differential Measurements on Single Ionization of He by 75 keV Proton Impact

NATALIYA V. MAYDANYUK, AHMAD HASAN, BRIAN TOOKE, EMILIO NANNI, MICHAEL SCHULZ, Physics Dept., University of Missouri-Rolla — Fully momentum analyzed scattered projectiles and recoil ions in 75 keV p + He collisions were measured in coincidence. The momentum of the ionized electrons was deduced from momentum conservation. We obtained fully differential three-dimensional angular distributions of electrons with an energy of 5.5 eV. Through the use of position sensitive detectors, data were recorded for a broad range of scattering angles simultaneously. According to the first Born approximation, peak structures in the direction of the momentum transfer q (difference between initial and final projectile momentum) and −q were expected (binary and recoil peak). Instead, we observe a peak which is shifted backwards at small scattering angles and forward at large scattering angles relative to q and no significant recoil peak. These observations as well as unexpected features outside the scattering plane are a manifestation of a surprisingly important role of the projectile – target nucleus interaction.

1 supported by NSF