Abstract Submitted for the DAMOP05 Meeting of The American Physical Society

Splitting of Λ -doubling in the transition of Hund's coupling cases in sodium molecule CHIN-CHUN TSAI, RAY-YUAN CHANG, Department of Physics, National Cheng-Kung University, Tainan, Taiwan, THOU-JEN WHANG, CHUEN-PING CHENG, Department of Chemistry, National Cheng-Kung University, Tainan, Taiwan — The phenomenon of orbital angular momentum L-uncoupling from its internuclear axis is observed in Na₂ by using high resolution cw optical-optical double resonance spectroscopy. This L-uncoupling removes the degeneracy of Λ -type doubling. In the case of Na₂, however, such Λ -type doubling only reported in the $B\,^1\Pi_u$ state with large speed of rotation and without significant dependence on the vibrational quantum number v. In this study, the splitting of Λ -doubling in the $4\,^1\Pi_g$ and $5\,^1\Delta_g$ states of Na₂ is directly measured under our experimental resolution. This splitting caused by the transition of Hund's coupling from case (a) to case (d) is due to L-uncoupling from its internuclear axis. The observed energy levels with e/f parities are assigned and the Λ -type splitting constants q_0 , q_v and μ are globally fitted to a standard deviation of σ less than $0.03\,cm^{-1}$.

Chin-Chun Tsai Department of Physics, National Cheng-Kung University, Tainan, Taiwan

Date submitted: 26 Jan 2005 Electronic form version 1.4