Splitting of Λ-doubling in the transition of Hund’s coupling cases in sodium molecule

CHIN-CHUN TSAI, RAY-YUAN CHANG, Department of Physics, National Cheng-Kung University, Tainan, Taiwan, THOU-JEN WHANG, CHUEN-PING CHENG, Department of Chemistry, National Cheng-Kung University, Tainan, Taiwan — The phenomenon of orbital angular momentum L-uncoupling from its internuclear axis is observed in Na$_2$ by using high resolution cw optical-optical double resonance spectroscopy. This L-uncoupling removes the degeneracy of Λ-type doubling. In the case of Na$_2$, however, such Λ-type doubling only reported in the $B^1\Pi_u$ state with large speed of rotation and without significant dependence on the vibrational quantum number v. In this study, the splitting of Λ-doubling in the $4^1\Pi_g$ and $5^1\Delta_g$ states of Na$_2$ is directly measured under our experimental resolution. This splitting caused by the transition of Hund’s coupling from case (a) to case (d) is due to L-uncoupling from its internuclear axis. The observed energy levels with e/f parities are assigned and the Λ-type splitting constants q_0, q_v and μ are globally fitted to a standard deviation of σ less than 0.03 cm$^{-1}$.

Chin-Chun Tsai
Department of Physics, National Cheng-Kung University, Tainan, Taiwan

Date submitted: 26 Jan 2005

Electronic form version 1.4