Calculations of autodetachment lifetimes of metastable states of Ba$^-$ and Eu$^-$

STEVEN M. O’MALLEY, DONALD R. BECK, Michigan Technological University — The metastable 5d6s6p $J = 9/2$ state of Ba$^-$, which decays by autodetachment to 6s2eh, has been found to be long lived with an estimated lifetime greater than 1 ms2.3. For the bound state, we have extended our basis set to include orbitals up to $l = 6$ due to the importance of $\langle n\ell\ell'|H|n\ell eh\rangle$ contributions to the energy width. We have also opened the 5p subshell to provide core-valence correlation to ensure proper mixing of the important 5d2eh and 6p2eh configurations in the continuum state. As we approach completion of this calculation, current results suggest an auto detachment lifetime greater than 10 ms. The analogous, and more computationally challenging, 4f75d6s6p $J = 8$ state in Eu$^-$, which decays by autodetachment to 4f76s2eh, has been found to be similarly long lived.

1This work is supported by National Science Foundation grant no: PHY-0097111.