Velocity-Selective Optical Hyperfine Pumping in (87)Rb Vapor

KRISHNA MYNENI, U.S. Army Research, Development, and Engineering Command — The absorption spectra of a probe laser in the presence of a saturating, uni-directional, linearly-polarized pump laser have been measured for the 87Rb D_2 transition in a room-temperature vapor cell. Using two independently tunable, co-propagating, narrow-line lasers for pump and probe, the Doppler-broadened ground state velocity distributions of atoms in the pump beam are directly observed. Strong velocity-selective optical hyperfine pumping is observed due to the non-degenerate level structure of the excited and ground states. It is found that the pump beam may be tuned within the multi-level $F = 2 \rightarrow F'$ transition to create peaked, highly non-thermal velocity distributions for the two ground state hyperfine levels. The widths and heights of these features in the absorption spectra are examined.

Krishna Myneni
U.S. Army Research, Development, and Engineering Command

Date submitted: 27 Jan 2005