Abstract Submitted for the DAMOP05 Meeting of The American Physical Society

A Bright Metastable Helium Beam for Neutral Atom Lithography¹ M. PARTLOW, (Now at Univ. Toronto), X. MIAO, J. BOCHMANN, (Now at MPI - Garching), M. EARDLEY, H. METCALF, Physics, Stony Brook Univ., Stony Brook, NY 11794-3800 — We have used nonmonochromatic light to produce large optical forces over a wide range of atomic speeds, e.g., slowing a beam of metastable helium $(He^*)^2$. Our He* beam has now been brightened by active collimation³ using large transverse bichromatic forces on the $2^3S_1 \rightarrow 2^3P_2$ transition at $\lambda = 1083$ nm. An LN₂ cooled discharge source yielding 10^{14} atoms/sr-s with $\overline{v} \approx 1000$ m/s forms the beam. We have captured atoms from a transverse velocity range of \pm 87 m/s (175 mrad cone) in an interaction length of only 5 cm comprised of four interaction regions. The collimated beam has an integrated flux of 1.4×10^{11} atoms/s and thus contains ~ 1/4 of the total source output. Further collimation with a subsequent optical molasses yields an overall increase in brightness by a factor of 4100. Small improvements to the collimation will produce a flux density high enough to expose a resist for atomic nanolithography in less than one minute. The bichromatic detuning was $\delta = \pm 2\pi \times 60 \text{ MHz} (\pm 37\gamma)$. For this δ , the bichromatic force is optimum for $I \sim 0.7 \text{ W/cm}^2$ (4100 × I_{sat}) for each of four frequencies. The light originates from a single, extended-cavity DBR diode laser and is injected into two fiber amplifiers.

¹Supported by ONR and NSF
²M. Cashen and H. Metcalf, J. Opt. Soc. Am. B 20, 915 (2003).
³M. Partlow et al., Phys. Rev. Lett. 93, 213004 (2004).

Harold Metcalf Stony Brook

Date submitted: 27 Jan 2005

Electronic form version 1.4