Mean field theory for the domain formation in a spin-1 condensate

WENXIAN ZHANG, DUANLU ZHOU, L. YOU, School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA — Spin domains were recently observed in the off-equilibrium dynamics of a large condensate of 87Rb atoms confined in a cigar shaped optical trap\(^1\). For a two component condensate, the number of atoms within each component is conserved. The dynamics of domain formation has been investigated in detail using the mean field theory\(^2\). For a spin-1 condensate (with 87Rb or 23Na atoms), the number of atoms for each component varies due to spin exchange collisions $2|F = 1, m_F = 0⟩ \leftrightarrow |F = 1, m_F = -1⟩ + |F = 1, m_F = 1⟩$.

In this study, we investigate the effect of such exchange interactions on the dynamics of domain formation in a spin-1 condensate. Using both analytic calculations for a homogeneous condensate and numerical simulations for a trapped condensate, we provide a detailed understanding of the stable and unstable regions of the off-equilibrium dynamics. We also address the important role of an external magnetic field.

\(^1\)Private communications with M. -S. Chang and M. S. Chapman.