Abstract Submitted for the DAMOP05 Meeting of The American Physical Society

Noise diagnostics using one-dimensional quantum cellular automata YOUNG SOON KIM¹, Myongji University, MATTHEW DAVIDSON, Catholic University, GAVIN BRENNEN, NIST, CARL WILLIAMS, NIST — We study propagation of correlated errors during quantum simulation due to global pulse errors. Our model system consists of a one dimensional alternating array of two distinct species (or subspaces) of atoms distributed in n lattice sites with a nearest neighbor Ising-type interaction. Time evolution is generated according to a set of quantum cellular automata (QCA) rules which can be implemented through application of global control pulses on either species. We characterize the fidelity for generating entangled states and discuss how to use the system as a sensitive detector of environmental noise. We discuss how to build an architecture suitable for ensemble QCA experiments using a two-dimensional optical lattice.

¹On sabbatical leave at NIST

Gavin Brennen NIST

Date submitted: 28 Jan 2005 Electronic form version 1.4