Atomic Engineering: Production of Very-High-n Quasi-1D Atoms

J.J. MESTAYER, W. ZHAO, J.C. LANCASTER, F.B. DUNNING, Department of Physics and Astronomy, Rice University, C.O. REINHOLD, Oak Ridge National Laboratory, S. YOSHIDA, J. BURGDORFER, Vienna University of Technology — Quasi-one-dimensional (quasi-1D) atoms can be produced by photoexciting selected Stark states in the presence of a weak dc field. For \(n \gtrsim 500 \), such direct excitation of quasi-1D atoms becomes problematic because stray fields and effective laser linewidths lead to creation of a range of Stark states with no preferred orientation. We show here that very-high-\(n \) quasi-1D atoms can be produced by a multi-step process in which lower-\(n \) (\(n \sim 350 \)) quasi-1D atoms are first produced. The excited electron is then localized in phase space near the outer classical turning point at which time it is transferred to a highly-elongated very-high-\(n \) orbit using a half-cycle pulse (HCP). This leads to population of a broad distribution of final \(n \) states centered at \(n \sim 580 \) which it is shown can be dramatically narrowed by subsequent application of further HCPs. The factors that govern the final \(n \) distribution are discussed with the aid of classical simulations. The availability of very-high-\(n \) quasi-1D atoms allows the dynamics of the periodically kicked atom to be examined at high scaled frequencies, \(\nu_0 \approx 15 \). Novel behavior, such as local increases in survival probability with increasing number of kicks, is observed.

\[^1 \text{Research supported by the NSF, the Robert A Welch Foundation, the US DoE, and the FWF (Austria).} \]