Abstract Submitted for the DAMOP05 Meeting of The American Physical Society

Electron Impact Dissociation of CH2+ Producing CH+ and C+ Fragments C.R. VANE, M.E. BANNISTER, Oak Ridge National Laboratory, R.D. THOMAS, Stockholm University — Absolute total cross sections have been separately measured for electron-impact dissociation of CH_2^+ molecular ions resulting in CH⁺ and C⁺ fragments for 3-100 eV collisions using a crossed electron-ion beams technique. Magnetic analysis was used to selectively separate and detect the product CH^+ and C^+ ions, which were generated through a combination of dissociative excitation (DE) and dissociative ionization (DI) channels. DE yields neutral light fragments, while DI yields charged light fragments in addition to the CH⁺ or C⁺. In these measurements coincident light H, H_2 and/or H^+ , H_2^+ fragments were not detected. The relatively 'hot' (internal state) 10 keV CH_2^+ ions were provided by the ORNL CAPRICE ECR ion source. For both CH⁺ and C⁺ the measured total cross sections above 20 eV are approximately equal and energy independent at $\sim 5 \ge 10^{-17}$ $\rm cm^2$. The total uncertainties of the present results are about 10% at 40 eV. A broad peaked structure is observed in the CH⁺ cross section rising to $\sim 1 \ge 10^{-16} \text{ cm}^2$ at 10 eV. These heavy fragment data are being combined with previous measurements of light fragments from dissociation of CH_2^+ in an attempt to develop a coherent picture of the total electron-impact dissociation process. Research was sponsored by the OBES and OFES, U.S. DOE, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

> C.R. Vane Oak Ridge National Laboratory

Date submitted: 01 Feb 2005

Electronic form version 1.4