Abstract Submitted for the DAMOP05 Meeting of The American Physical Society

Nonadiabatic Coupling in the $3^{3}\Pi$ and $4^{3}\Pi$ State of NaK¹ R.D. MILES, L. MORGUS, J.P. HUENNEKENS, A.P. HICKMAN, Lehigh University — The excited $3^{3}\Pi$ and $4^{3}\Pi$ electronic states of the NaK molecule exhibit an avoided crossing, leading to anomalous behavior of many features of the ro-vibrational energy levels belonging to each state. We have carried out a joint experimental and theoretical investigation of these states. Experimentally, the hyperfine structure of numerous ro-vibrational levels has been determined using the Doppler-free, perturbationfacilitated optical-optical double resonance (PFOODR) technique. Striking patterns in the data provide a sensitive probe of the electronic wave function in the various regions of the double well $3^{3}\Pi$ potential. Companion *ab initio* electronic structure calculations have provided adiabatic and diabatic potential curves that account for the avoided crossing. The nonadiabatic coupling between the $3^{3}\Pi$ and $4^{3}\Pi$ states can be exactly formulated in terms of the diabatic potential curves. Using the ab *initio* diabatic potential curves as a starting point, we used a nonlinear fitting routine to adjust the potential curves to fit the observed structure. The pertubations between the $3^{3}\Pi$ and $4^{3}\Pi$ states have been accurately reproduced.

¹work supported by NSF and by the GAANN Fellowship program

A. Peet Hickman Lehigh University

Date submitted: 01 Feb 2005

Electronic form version 1.4