Abstract Submitted for the DAMOP05 Meeting of The American Physical Society

Exploring the parameter space for ionization and dissociation of \mathbf{H}_2^+ in an intense laser pulse¹ VLADIMIR ROUDNEV, B.D. ESRY, J.R. Macdonald Laboratory, Department of Physics, Kansas State University — We explore the dissociation and ionization of \mathbf{H}_2^+ ions aligned with a 790 nm laser field of peak intensity in the range 1.0×10^{13} to 7.0×10^{14} W/cm². Calculated dissociation and ionization probabilities are reported for different initial vibrational states and for the initial state averaged over the Franck-Condon distribution. The dependence on the carrier-envelope phase difference for different initial states and for pulse durations from 5 to 30 fs FWHM is presented. These results — from direct solution of the time-dependent Schrödinger equation — are compared with solutions in the Born-Oppenheimer representation with two-channels for low peak laser intensities.

¹This work wassupported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

> Vladimir Roudnev J.R. Macdonald Laboratory, Department of Physics, Kansas State University

Date submitted: 01 Feb 2005

Electronic form version 1.4