Exploring the parameter space for ionization and dissociation of H$_2^+$ in an intense laser pulse1 VLADIMIR ROUDNEV, B.D. ESRY, J.R. Macdonald Laboratory, Department of Physics, Kansas State University — We explore the dissociation and ionization of H$_2^+$ ions aligned with a 790 nm laser field of peak intensity in the range 1.0×1013 to 7.0×1014 W/cm2. Calculated dissociation and ionization probabilities are reported for different initial vibrational states and for the initial state averaged over the Franck-Condon distribution. The dependence on the carrier-envelope phase difference for different initial states and for pulse durations from 5 to 30 fs FWHM is presented. These results — from direct solution of the time-dependent Schrödinger equation — are compared with solutions in the Born-Oppenheimer representation with two-channels for low peak laser intensities.

1This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.