Ortho- and Para-Positronium Formation Measurements for Positron Scattering by C_2H_2 and CH_4^*

J. EDWARDS, D. DUONG, W. E. KAUPPILA, E. G. MILLER, T. S. STEIN, E. SURDUTOVICH, Wayne State University — We are investigating ortho- and para-positronium formation for positrons interacting with C_2H_2 and CH_4 in a gas scattering cell. These measurements involve the detection of two γ rays in coincidence for energy windows (1) centered at 511 keV resulting from the decay of short-lived (0.1 ns) para-Ps and the destruction of longer-lived (0.1 ms) ortho-Ps at the scattering cell walls, and (2) from 300 to 460 keV resulting from the three gamma decay of ortho-Ps.\(^\dagger\) By taking the ratios of these signals versus positron impact energy we find that near the Ps formation threshold the $3\gamma/2\gamma$ ratios have their largest values of about 1.6, which is where Ps has its lowest kinetic energy and ortho-Ps decays without breakup at the cell walls. Comparing these ratios with ones obtained for Ar\(^\dagger\) reveal interesting differences, which include the formation of Ps with inner orbital electrons. The threshold we observe for forming Ps with CH_4 is consistent with this being an adiabatic ionization process, as opposed to a vertical ionization process.

*Research supported by NSF Grant PHY 99-88093.