Gd IV $4f^7 J = 7/2$ Levels

Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

¹ DONALD R. BECK, Michigan Technological University — This is an ion of tremendous complexity for the *ab initio* computationalist, because a large energy matrix is required (well above 20000) and a large number of basis functions (over 100 000 determinants in some cases) is needed to create its elements. Furthermore, 4f pair correlation converges rather slowly in angular space ² in contrast, say, to that of *d* shell electrons. The ion is of potential interest for determination of the electron electric dipole moment and in PbF₂:Gd scintillators. We report energy differences between the 50 $4f^7 J = 7/2$ levels whose average error ³ for the bottom five levels is 1309 cm⁻¹, comparable to the best semi-empirical results ⁴. Our values, however, are obtained by dividing the energy matrix up into about 50 pieces. Future work will focus on assembly (and diagonalization) of the full energy matrix.

¹Supported by the Department of Energy, Chemical Sciences Division
²K. Jankowski *et al*, Int. J. Quant. Chem. XXVII, 665 (1985)
³W. C. Martin *et al*, Atomic Energy Levels - The Rare Earth Elements, NBS, USGPO, Washington, DC (1978)
⁴V. A. Dzuba *et al*, Phys. Rev. A **66**, 032105 (2002)

Donald R. Beck Michigan Technological University

Date submitted: 10 Jan 2006

Electronic form version 1.4