Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

The Fundamental Constants if c is Changing: A New Mass Constant and its Connection with the Electron FELIX T. SMITH, SRI International — When special relativity is extended to expanding hyperbolic position space [1], c decreases as $t^{-1/2}$ and there is a new expansion constant, $\sigma = c_0^2 H_0^{-1} = 3.89 \times 10^{34} \text{ m}^2 \text{s}^{-1}$. Many fundamental constants become time-dependent and must be corrected by a small power of c. The corrected electrical permittivity of space is $\bar{\varepsilon}_o = \varepsilon_o c$, and α remains constant. The corrected gravitation constant is $\bar{G} = G/c$. A new fundamental mass constant of gravitation and cosmology occurs, $m_* = \left(\hbar^2/\bar{G}\sigma\right)^{1/3} = \left(\hbar^2 H_0/G_0 c_0\right)^{1/3}$, with the value $1.087 \, (\pm 0.010) \times 10^{-28} \, \text{kg}$. Its product αm_* with α accounts for 87% of the observed inertial mass m_e of the electron. This establishes a new phenomenological relationship between the constants of electromagnetism and the electron on the one hand and those of gravitation and cosmology on the other.

[1] F. T. Smith, Ann. Fond. L. de Broglie, **30**, 179 (2005);); http://www.ensmp.fr/aflb/AFLB-302/table302.htm

Felix T. Smith SRI International

Date submitted: 25 Jan 2006 Electronic form version 1.4