Hyperfine splitting of the 6s level in Rb and its hyperfine anomaly

ADRIAN PEREZ-GALVAN, YANTING ZHAO, LUIS OROZCO, Dept. Physics UMD, College Park MD — We present a hyperfine splitting measurement on the 6s level in 85Rb and 87Rb. The source of atoms is a 30 cm long cell with the natural abundance of the two isotopes. The cell operates at room temperature in a controlled magnetic environment. Two step excitation through the $5P_{1/2}$ level with lasers at 795 nm and 1.3 µm allows us to study the hyperfine separation of the 6s level. Use of AM sidebands in the 1.3 µm laser produces in-situ calibration of the scan. Detection through changes in the absorption at 795 nm shows resonances with good signal to noise ratio to permit a preliminary measurement of the splittings to better than 0.4 MHz. This resolution allows quantitative extraction of the hyperfine anomaly, a manifestation of the space distribution of the nuclear magnetization, in the first excited state of the s manifold. We compare our results with ab initio calculations to test the quality of their wave-functions at the nucleus.

1Work supported by NSF