Lβ₂ satellites in the X-ray emission spectra of 5d transition elements

SURENDRA POONIA, Research Scientist (Atomic and X-Ray Emission Spectroscopy), Division of NRE, Central Arid Zone Research Institute, Jodhpur, India — The X-ray satellite spectra arising due to L₃Mₓ−MₓNₓ₄,₅ (x ≡ 1-5) transition array, in elements with Z = 74 to 90, have been calculated. The energies of various transitions of the array have been determined by using available HFS data on K-LM and L-MN Auger transition energies, their relative intensities have been estimated by considering cross sections of singly ionized L₃Mₓ (x ≡ 4, 5) states and then of subsequent Coster-Kronig (CK) and shake off processes. The calculated spectra have been compared with the measured satellite energies in Lβ₂ spectra. The peaks in the theoretical spectra were compared with the available measured Lβ₂ satellite spectra. The peaks in the theoretical satellite spectra were identified as the experimentally reported satellites β₁I and β₂II, which lie on the high-energy side of the Lβ₂ dipole line.

Surendra Poonia
Research Scientist (Atomic and X-Ray Emission Spectroscopy),
Division of NRE, Central Arid Zone Research Institute, Jodhpur, India