Abstract Submitted
for the DAMOP06 Meeting of
The American Physical Society

$2p_{3/2}^{-1}3x^{-1}3d^{-1}$ X-Ray satellites in the $L\alpha_1$ region of 4d transition elements SURENDRRA POONIA, Research Scientist (Atomic and X-Ray Emission Spectroscopy), Division of NRE, Central Arid Zone Research Institute, Jodhpur - 342003, Rajasthan, India. — The X-ray satellite spectra arising due to $2p_{3/2}^{-1}3x^{-1}3d^{-1}$ (x ≡ s, p, d) transition array, in elements with Z = 40 to 48, have been calculated, using available Hartree-Fock-Slater (HFS) data on 1s$^{-1}$-$2p_{3/2}^{-1}3x^{-1}$ and $2p_{3/2}^{-1}3x^{-1},3x'^{-1}$ Auger transition energies. The relative intensities of all the possible transitions have been estimated by considering cross-sections for the Auger transitions simultaneous to a hole creation and then distributing statistically the total cross sections for initial two hole states $2p_{3/2}^{-1}3x^{-1}$ amongst various allowed transitions from these initial states to $3x^{-1}3d^{-1}$ final states by Coster-Kronig (CK) and shake off processes. In both these processes initial single hole creation is the prime phenomenon. Each transition has been assumed to give rise to a Gaussian line and the overall spectrum has been computed as the sum of these Gaussian curves. The calculated spectra have been compared with the measured satellite energies in $L\alpha_1$ spectra. Their intense peaks have been identified as the observed satellite lines. The peaks in the theoretical satellite spectra were identified as the experimentally reported satellites α_3, α_4 and α_5, which lie on the high-energy side of the $L\alpha_1$ dipole line.

Surendra Poonia
Research Scientist (Atomic and X-Ray Emission Spectroscopy)
Division of NRE, Central Arid Zone Research Institute, Jodhpur - 342003, Rajasthan, India

Date submitted: 25 Jan 2006
Electronic form version 1.4