Abstract for an Invited Paper for the DAMOP06 Meeting of The American Physical Society

Multiple Photoionization of C60¹

RALF WEHLITZ, Synchrotron Radiation Center, Univ. of Wisconsin-Madison

Relative C_{60}^{2+}/C_{60}^+ , C_{60}^{3+}/C_{60}^+ , and C_{60}^{4+}/C_{60}^+ photoionization cross-section curves have been obtained using monochromatized light of the Synchrotron Radiation Center in the energy range between the double-ionization threshold (19 eV) and K-shell excitations (284 eV). In addition, we have measured the photoionization-induced fragmentation of C_{60} for different charge states. Our measurements are a great improvement to existing data ² ³ regarding energy range and accuracy. Of particular interest is the C_{60}^{2+}/C_{60}^+ ratio curve that surprisingly exhibits a modulation with local enhancements of the ratio at certain excess energies (= photon energy minus double-ionization threshold). Our data analysis reveals that one of the two photoelectrons created in the double photoionization process has a de Broglie wavelength, calculated for each of the ratio-enhanced excess energies, that matches a certain distance in the C_{60} cluster. These distances can be associated with the C_{60} cluster's diameter, the diameter of a hexagon, and the distance between two neighboring carbon atoms ⁴.

¹The SRC is supported by NSF Grant No. DMR-0084402.

²T. Drewello *et al.*, Int. Journal of Mass Spectrom. and Ion Processes **124**, R1 (1993).

³A. Reinköster *et al.*, J. Phys. B **37**, 2135 (2004).

⁴P.N. Juranic *et al.*, Phys. Rev. Lett. **96**, 023001 (2006).