Precise Double-Photoionization Data for Na and K1 P.N. JURANIC, Synchrotron Radiation Center, Univ. of Wisconsin-Madison, J.C. NORDBERG2, Gustavus Adolphus College, St. Peter, MN, R. WEHLITZ, Synchrotron Radiation Center, Univ. of Wisconsin-Madison — We have measured precise double-to-single photoionization ratios and double-photoionization cross-sections of sodium and potassium near threshold. A previously discovered scaling law 3 allows us to conveniently compare the energy dependence of the double-to-single photoionization ratio by scaling the energy axis. Recently, we have also found a scaling law that enables us to predict the absolute double-to-single photoionization ratio 4. We have applied this scaling law to our new data and found excellent agreement. Previous tests of this scaling law were limited to systems where electrons were emitted from s-shells. However, in the cases of Na and K a p electrons is participating in the double-ionization process. Interestingly and in spite of the different orbital, the scaling law is still valid.

1The SRC is supported by NSF Grant No. DMR-0084402.
2Supported by the NSF REU Program