Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

Mössbauer Study of Eu₁₄MnSb₁₁ and Yb₁₄MnSb₁₁ Zintl Compounds. DURGA KAFLE, Department of Physics, USU, Logan, UT 84322, DENNIS BROWN, Department of Physics, NIU, Dekalb IL 60115 — Antimony-121 Mössbauer effect measurements have been performed mainly on $Eu_{14}MnSb_{11}$ and $Yb_{14}MnSb_{11}$ zintl compounds, through the temperature range from 2 K to room temperature. The isomer shifts observed (-4.5mm/sec to -10.3 mm/sec and -7.7 mm/sec to -11.2 mm/sec, respectively) from the present study for both $Eu_{14}MnSb_{11}$ and $Yb_{14}MnSb_{11}$ zintl compounds are close to the values (-8.54mm/sec to -8.73mm/sec) obtained for InSb, the standard compound for antimony-121 Mössbauer effect measurements. Isomer shift distribution fits by using a Voigtbased Gaussian distribution profile show distinct peaks at the corresponding average isomer shift values obtained from Lorentzian four-site fits for $Eu_{14}MnSb_{11}$. The study of the temperature dependence of line broadening as well as hyperfine magnetic field confirms the existence of long-range magnetic ordering of antimony-121 in Eu₁₄MnSb₁₁below 12 K which resulted in the transition temperature, T_C , of 12 K, whereas T_C found in Yb₁₄MnSb₁₁ is 45 K. The linear fit of the natural logarithm of area versus temperature using the Debye model for the high-temperature limit gives the values of 185 K and 196 K for the Debye temperature for $Eu_{14}MnSb_{11}and$ Yb₁₄MnSb₁₁ zintl compounds, respectively.

> Durga Kafle Department of Physics, USU, Logan, UT 84322

Date submitted: 26 Jan 2006

Electronic form version 1.4