Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

An Optically Excited Metastable Krypton Atomic Beam Source¹ MICHAEL MASTROIANNI, CHAD ORZEL, Union College Dept. of Physics and Astronomy — We report the construction of an optically excited metastable krypton atomic beam source. Ground-state Kr atoms are excited to the $5s[3/2]_1$ state by a 123 nm photon from a krypton resonance line lamp, then to the $5p[5/2]_2$ state by an 819 nm photon from a diode laser. From the $5p[3/2]_2$ state, they spontaneously decay into the $5s[3/2]_2$ (³P₂) metastable state with 77% probability. We characterize the source using both resonant fluorescence at 811 nm and a surface ionization detector. The source will be used to load a Kr* magneto-optical trap for Kr background evaluation by Atom Trap Trace Analysis.

¹Supported by a grant from the National Science Foundation

Chad Orzel Union College Dept. of Physics and Astronomy

Date submitted: 27 Jan 2006

Electronic form version 1.4