Resonance Structures in Photoionization of S^+

SWARAJ TAYAL, Clark Atlanta University — Resonance structures in the photoionization of S^+ for the removal of a 3p or 3s electron from the ground 3s23p3 4S^o and excited metastable 2D^o and 2P^o states have been studied in the B-spline R-matrix approach. The non-orthogonal orbitals are used for an accurate description of the S^+ initial bound states, the final S^{2+} ion plus photoelectron states and S^{2+} ionic thresholds. Calculations have been carried out in 17- and 27-state close-coupling approximations. The relativistic effects have been considered in the Breit-Pauli Hamiltonian. Photoionization cross sections are dominated by 3s23p2(1D)ns 2D, 3s23p2(1D)nd 2F, 2D, 2P and 3s3p3(5S^o, 3S^o, 3D^o, 3P^o)np 4P Rydberg series of resonances. Our results will be compared with merged ion-photon beam experiment.

This research work is supported by NASA

Swaraj Tayal
Clark Atlanta University

Date submitted: 06 Feb 2006