Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

Resonance Structures in Photoionization of S^{+1} SWARAJ TAYAL,

Clark Atlanta University — Resonance structures in the photoionization of S^+ for the removal of a 3p or 3s electron from the ground $3s^23p^3$ $^4S^o$ and excited metastable $^2D^o$ and $^2P^o$ states have been studied in the B-spline R-matrix approach. The non-orthogonal orbitals are used for an accurate description of the S^+ initial bound states, the final S^{2+} ion plus photoelectron states and S^{2+} ionic thresholds. Calculations have been carried out in 17- and 27-state close-coupling approximations. The relativistic effects have been considered in the Breit- Pauli Hamiltonian. Photoionization cross sections are dominated by $3s^23p^2(^1D)ns$ 2D , $3s^23p^2(^1D)nd$ 2F , 2D , 2P and $3s3p^3(^5S^o$, $^3S^o$, $^3D^o$, $^3P^o$)np 4P Rydberg series of resonances. Our results will be compared with merged ion-photon beam experiment.

¹This research work is supported by NASA

Swaraj Tayal Clark Atlanta University

Date submitted: 06 Feb 2006 Electronic form version 1.4