PCI effects in electron-impact excitation of the $(3p^5 4s^2)^2P_J$ levels in potassium.1 V. BOROVIK, E. REMETA, A.A. BOROVIK, Institute of Electron Physics, Uzhgorod, Ukraine, OLEG ZATSARINNY, KLAUS BARTSCHAT, Drake University — We report preliminary results for the PCI lineshift in ejected-electron spectra corresponding to the decay of the $(3p^5 4s^2)^2P_{3/2,1/2}$ autoionizing levels in potassium atoms. The spectra were measured precisely for impact energies up to 7 eV above the corresponding excitation thresholds. The energy dependencies of the lineshift were fitted using a semi-classical approach [1], which ignores the potential influence of K^- resonances. The autoionizing widths for the $^2P_{3/2}$ and $^2P_{1/2}$ levels obtained in this method were, respectively, 16 meV and 26 meV. These values exceed, by approximately a factor of three, previous experimental [2,3] results that were free of PCI effects. Hence this discrepancy may be due to the presence of the strong near-threshold K^- resonances observed earlier in the excitation functions for the above levels [4]. [1] A. Niehaus, J. Phys. B 10 1845 (1977). [2] R.D. Hudson and V.L. Carter, J. Opt. Soc. Amer. 57 1471 (1967). [3] R.D. Driver, J. Phys. B 9 143 (1976). [4] A.A. Borovik, A.N. Grum-Grzhimailo, K. Bartschat and O. Zatsarinny, J. Phys. B 38 1081 (2005).

1Work supported by INTAS under grant 03-51-4706 and the NSF under PHY-0244470 and PHY-0311161.