Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

Demonstration of an Electron Electric Dipole Moment Experiment Using Electric-Field Quantization in a Cesium Cold Atom Fountain HARVEY GOULD, JASON M. AMINI², CHARLES T. MUNGER³, LBNL — A Cs fountain electron electric dipole moment (EDM) experiment using electric-field quantization is demonstrated. With magnetic fields reduced to ≤ 200 pT, the electric field lifts the degeneracy between hyperfine $|m_F|$ levels and, along with the fountain geometry, suppresses systematics from motional magnetic fields. Transitions are induced and the atoms polarized and analyzed in field-free regions. Our results suggest that a fountain experiment can detect (or rule out) an electron EDM far smaller than the present experimental limits.

Harvey Gould LBNL

Date submitted: 27 Jan 2006 Electronic form version 1.4

 $^{^1{\}rm Supported}$ by NASA and by a NIST Precision Measurements Grant $^2{\rm also}$ Phys. Dept. U.C. Berkeley $^3{\rm also}$ SLAC