Millimeter Wave Spectroscopy of cold Rb Rydberg atoms

JIANG HAN, YASIR JAMIL, PAUL TANNER, DON NORUM, T.F. GALLAGHER,
University of Virginia — By using the cold ^{85}Rb Rydberg atoms in a magneto optical trap, we have measured the single photon $^{85}\text{Rb} n-d-(n-2)f$ millimeter wave transitions for $32 \leq n \leq 39$. The measurements were carried out at densities of 10^9 atoms/cm$^{-3}$, roughly five orders of magnitude lower than those used in optical measurements. Since the 10 G/cm gradient of the trap magnetic field would result in 5 MHz wide resonances, we switched off the field during the measurements. The observed narrow resonances will be used to improve the accuracy of the f quantum defect of ^{85}Rb.

1Supported by Air Force Office of Scientific Research
2Supported by HEC of Pakistan and on leave from University of Agriculture, Faisalabad

Paul Tanner
University of Virginia

Date submitted: 27 Jan 2006

Electronic form version 1.4