Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

Fine and hyperfine structure of ro-vibrational levels of the NaK $1^{3}\Delta$ states from v = 3 to near the dissociation limit¹ A. D. WILKINS, S. JAWALKAR, J. HUENNEKENS, A. P. HICKMAN, Lehigh University, L. MORGUS, Drew University — Our previous high-resolution spectroscopic studies of the fine and hyperfine structure of ro-vibrational levels of the $1^{3}\Delta$ state of NaK have been extended to include vibrational levels up to v = 59, the highest of which are within 4 cm^{-1} of the dissociation limit. Using the IPA method, a potential curve was determined that reproduces all measured levels $(3 \le v \le 59)$ to an accuracy of ~ $0.026 \,\mathrm{cm}^{-1}$, and C_6 and C_8 coefficients have also been determined from the long range potential. The fine and hyperfine structure of the $1^{3}\Delta$ ro-vibrational levels were analyzed to determine the values A_v and $b_{\rm F}$ of the spin-orbit coupling constant and the hyperfine Fermi contact constant. The measured fine and hyperfine structure for v in the range $44 \le v \le 48$ exhibits anomalous behavior due to the mixing between the $1^{3}\Delta$ and $1^{1}\Delta$ states. The theoretical method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. Ab initio calculations of the spin-orbit coupling constants A_v are also underway.

¹Work supported by NSF.

A. P. Hickman Lehigh University

Date submitted: 30 Jan 2006

Electronic form version 1.4