Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

Singlet-Triplet Mixing and Ground-State Molecule Formation in Ultracold $\mathrm{Rb}_2{}^1$ YE HUANG, DAJUN WANG, HYEWON PECHKIS, JIANBING QI², COURT ASHBAUGH, EDWARD EYLER, PHILLIP GOULD, WILLIAM STWALLEY, University of Connecticut — We have observed two manifestations of singlet-triplet mixing in ultracold Rb_2 . In the first, we start with high-v levels of the $X^1\Sigma_g^+$ state which are produced by photoassociation and detected by REMPI. Scanning the detection laser reveals transitions to the $2^3\Pi_u$ state. In the second case, we start with $a^3\Sigma_u^+$ molecules and observe transitions to $3^1\Sigma_g^+$. We propose a scheme for producing $X^1\Sigma_g^+(v=0)$, starting with $a^3\Sigma_u^+$ molecules in high-v: $a^3\Sigma_u^+ \to 3^1\Sigma_g^+ \to A^1\Sigma_u^+ \to X^1\Sigma_g^+$. The first step is made possible by the admixture of triplet character in the $3^1\Sigma_g^+$ state.

Ye Huang University of Connecticut

Date submitted: 26 Jan 2006 Electronic form version 1.4

¹Supported by NSF

²Present address: Penn State Berks Lehigh-Valley College, USA