Monodromy? What’s Monodromy?1 J.B. DELOS, William and Mary, D. SADOVSKII, B. ZHILINSKII, Universite Littoral — We say that a system exhibits monodromy if we take the system around a closed loop in its parameter space, and we find that the system does not come back to its original state. Many systems have this property: atoms in a trap, a hydrogen atom in crossed fields, electronic states of H_2^+, and vibrational states of CO_2. Imagine noninteracting classical particles moving in a two-dimensional circular box with a hard reflecting wall, and with a cylindrically-symmetric potential energy barrier:

\[
\rho = \left(x^2 + y^2 \right)^{1/2}, \quad V(\rho) = -a \rho^2/2, \quad \rho < R, \quad V(\rho) = \infty, \quad \rho \geq R.
\]

Start all the particles moving on one line with angular momentum $L=0$, and with energy $E<0$. Then impose additional smooth forces and torques on the particles so that $[L(t), E(t)]$ moves in a circle around the origin in the $[L,E]$ plane. In other words, apply a torque to increase the angular momentum, then drive the particles to a higher energy (above the barrier), then reduce the angular momentum to a negative value, reduce the energy, and finally come back to the initial energy and angular momentum. Where in space do the particles end up? The answer is surprising.

1Supported by NSF

John Delos
William and Mary

Date submitted: 27 Jan 2006
Electronic form version 1.4