Fragmentation of H$_2$O by 1 – 5 keV He$^{2+}$ ions: Experiment and Theory

N. STOLTERFOHT1, Physics Department, University of Florida, Gainesville, FL 32611, R. HELLMAMNER, P. SOBOCINSKI, Hahn-Meitner-Institut, 14109 Berlin, Germany, R. CABRERA-TRUJILLO, Y. OHRN, E. DEUMENS, J. SABIN, Physics Department, University of Florida, Gainesville, FL 32611

— Fragmentation of H$_2$O molecules induced by 3He$^{2+}$ impact was investigated experimentally as a function of the energy in the range from 1-5 keV. Collisions at large impact parameters are found to produce fragment protons with energies centered around peaks at 6 eV and 15 eV. The H$^+$ fragments were detected in the angular range from 25˚ to 135˚ with respect to the incident beam direction. Absolute fragmentation cross sections $d\sigma/d\Omega$, differential in the emission angle are found to be anisotropic, with protons preferentially emitted at angles near 90˚. In addition to the experiments, we performed quantum-mechanical calculations to understand the fragmentation mechanisms producing protons at preferred energies and angles. The theoretical results are obtained using the Electron-Nuclear Dynamics formalism (END), which solves the time-dependent Schrödinger equation.

1On Sabbatical leave from Hahn-Meitner-Institut, 14109 Berlin, Germany

R. Cabrear-Trujillo
Physics Department, University of Florida, Gainesville, FL 32611

Date submitted: 14 Mar 2006 Electronic form version 1.4