Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

Excitation of CO^2 by electron impact¹ Y.-K. KIM, NIST, H. KATO, M. HOSHINO, H. TANAKA, Sophia Univ., Tokyo — The BEf scaling² —which converts plane-wave Born (PWB) cross sections for electron-impact excitations of atoms to accurate results at low incident electron energy T—is also found to provide results in excellent agreement with the new energy-loss experimental data for the A ${}^1\Pi(v'=n) \leftarrow X {}^1\Sigma(v''=0)$, n=0–7 excitations of the CO molecule at T=100 eV. The new experimental data were measured at the Sophia Univ. using the same apparatus desribed in Green et al.³ The unscaled PWB cross sections for the individual vibrational excitations were obtained by integrating the generalized oscillator strengths published by Chandranupong et al.⁴ The dipole f values and excitation energies compiled by Berkowitz ⁵ are used to apply the BEf scaling to the integrated (as opposed to angular distributions) PWB cross sections. Experiment at lower T is in progress at Sophia Univ. to provide additional test of the BEf scaling for molecules.

Date submitted: 23 Feb 2006 Electronic form version 1.4

¹Work at NIST supported in part by the Office of Fusion Sciences, USDOE and work at Sophia Univ. by the Ministry of Education, Sport, Culture and Technology, Japan

²Y.-K. Kim, Phys. Rev. A **64**, 032713 (2001).

³M. A. Green et al., J. Phys. B **35**, 567 (2002)

⁴L. Chantranupong et al., Chem. Phys. **164**, 183 (1992).

⁵J. Berkowitz, Atomic and Molecular Photoabsorption, Academic Press (2002)