Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

Progress ttrapping single indium ions for possible frequency reference WILLIAM TRIMBLE, JEFF SHERMAN, WARREN NAGOURNEY, University of Washington — The ${}^{1}S_{0} \rightarrow {}^{3}P_{0}$ transition in the In⁺ ion at 237 nm has a natural linewidth of 0.8 Hz and is a promising candidate for an optical frequency reference. Since this "clock" transition is J=0 \rightarrow J=0, it lacks shifts from the electric quadrupole interaction, a leading systematic in some ions under investigation. This transisition coincides with the fourth harmonic of the 946 nm line available from already narrow-linewidth Nd:YAG lasers. We report recent developments in spectroscopy of single In⁺ ions using a Paul-Staubel trap and a new frquency-quadrupled diode laser to excite the stronger ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ transition at 230 nm. We also propose comparisons between the indium ion frequency reference and other frequency references at the University of Washington.

William Trimble

Date submitted: 27 Jan 2006

Electronic form version 1.4