Abstract Submitted for the DAMOP06 Meeting of The American Physical Society

On the rate of dissociative recombination of H_3^+ in recent afterglow plasma experiments¹ VIATCHESLAV KOKOOULINE, IVAN MIKHAYLOV, Department of Physics, University of Central Florida — Determination of the rate of the dissociative recombination (DR) in H_3^+ has been a cotroversal issue for several decades. At present, the experimental rate about $7-9 \times 10^{-8}$ cm³/s at 300 K obtained from several independent storage ring experiments seems to be the most reliable for the ground state of H_3^+ . There is only one major persistant issue: Two recent experiments in flowing and stationary afterglow plasma with H_3^+ made by Glosik and collaborators demonstrated a significant dependence of the DR rate as a function of density of molecular hydrogen, which is present in the plasma. In this study we are suggesting a model that explains the observed dependence of the DR rate on the density of H_2 . The model is based on the long-living metastable states of H_3^+ created in the decaying stationary or flowing plasma.

¹This work is supported by NSF-ITR grant #PHY-0427460

Viatcheslav Kokoouline Department of Physics, University of Central Florida

Date submitted: 01 Feb 2006

Electronic form version 1.4