Abstract for an Invited Paper for the DAMOP06 Meeting of The American Physical Society

Applications of Attosecond Lasers to Atoms and Molecules in Strong Laser Fields MARC VRAKKING, AMOLF

In the past two decades femtosecond time-resolved experiments have allowed the observation of molecular rotations and vibrations, and of photo-induced chemical processes. However, these experiments often tell only half the story: they show the motion of atoms moving under the influence of potential energy curves that result from a time-average over the motion of all electrons in the system. The natural time-unit for this electronic motion itself is the atomic unit of time (1 a.u. = 0.024 fsec = 24 attoseconds). *Real-time* observation of this motion therefore requires recently developed attosecond laser techniques. When considering motions of electrons we may distinguish between motion that results from driving the electrons with a strong laser field and motion that results from photo-absorption in a weak laser field. In strong laser fields the electron motion can be quite intuitive. Eventually, studies of photo-absorption in weak laser fields are important, since all photo-absorption processes in nature (i.e. outside a laser laboratory) occur in this regime. At the meeting I will discuss experiments aimed at observing the motion of electrons on attosecond timescales in strong laser fields. An interesting example is the dissociative ionization of the hydrogen molecule (into a proton and a neutral atom), where we have recently observed that the dissociation process can be controlled by the carrier envelope phase of a few-cycle laser pulse.